On Generating FC Fuzzy Rule Systems from Data Using Evolution Strategies
نویسندگان
چکیده
Sophisticated fuzzy rule systems are supposed to be flexible, complete, consistent and compact (FC). Flexibility, completeness and consistency are essential for fuzzy systems to exhibit an excellent performance and to have a clear physical meaning, while compactness is crucial when the number of the input variables increases. However, the completeness and consistency conditions are often violated if a fuzzy system is generated from data collected from real world applications. In an attempt to develop FC3 fuzzy systems, a systematic design paradigm is proposed using evolution strategies. The structure of the fuzzy rules, which determines the compactness of the fuzzy systems, is evolved along with the parameters of the fuzzy systems. Special attention has been paid to the completeness and consistency of the rule base. The completeness is guaranteed by checking the completeness of the fuzzy partitioning of input variables and the completeness of the rule structure. An index of inconsistency is suggested with the help of a fuzzy similarity measure, which can prevent the algorithm from generating rules that seriously contradict with each other or with the heuristic knowledge. In addition, soft T-norm and BADD defuzzification are introduced and optimized to increase the flexibility of the fuzzy system. The proposed approach is applied to the design of distance controller for cars. It is verified that a FC fuzzy system works very well both for training and test driving situations, especially when the training data are insufficient.
منابع مشابه
On generating FC3 fuzzy rule systems from data using evolution strategies
Sophisticated fuzzy rule systems are supposed to be flexible, complete, consistent and compact (FC(3)). Flexibility, and consistency are essential for fuzzy systems to exhibit an excellent performance and to have a clear physical meaning, while compactness is crucial when the number of the input variables increases. However, the completeness and consistency conditions are often violated if a fu...
متن کاملA Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems
Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...
متن کاملUSING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS
This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...
متن کاملAn Executive Approach Based On the Production of Fuzzy Ontology Using the Semantic Web Rule Language Method (SWRL)
Today, the need to deal with ambiguous information in semantic web languages is increasing. Ontology is an important part of the W3C standards for the semantic web, used to define a conceptual standard vocabulary for the exchange of data between systems, the provision of reusable databases, and the facilitation of collaboration across multiple systems. However, classical ontology is not enough ...
متن کاملHybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems
Genetic algorithms and evolution strategies are combined in order to build a multi-stage hybrid evolutionary algorithm for learning constrained approximate Mamdani-type knowledge bases from examples. The genetic algorithm niche concept is used in two of the three stages composing the learning process with the purpose of improving the accuracy of the designed fuzzy rule-based systems. The propos...
متن کامل